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Risk-efficient estimation of the mean exponential survival time under
random censoring

*
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Abstract: The paper proposes a sequential estimator § of the parameter

0 of an exponential distribution when the data is censored. Without any
further conditions, it is shown that 8 is asymptotically risk

efficient when the loss is measured by the squared error loss of estimation
of © plus a linear cost function of the number of observations. 1In
addition, it is shown that 8 is asymptotically normal as the cost per
observation goes to zero.
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1. Introduction. .

In several longitudinal investigations the estimation of the mean
survival time is of basié 1mporéance. This is usually based on the data
gathered from a sample of n(2 1) identical units on test as in a clinical
trial or life teét. However, it is often the case in these survival studies
that the lifetimes of the specimens are not completely observable due to
random withdrawals and consequent loss to follow-up. Accordingly, for
each survival time X we envisage a competing censoring time Y , but the
only datum available is (Z,8) where 2 = min(X,Y) and & = 1 whenever
X<Y and 8§ = 0 otherwise. We shall assume X. to be independent of Y
and z'z 0 almost surely (a.s.) for each 8 .

Suppose {(Zi;si):l < 1 £ n} is a random sample of size n with
lifetimes xi having common exponential suxvival funétion
F(t) = exp(- t/8) , t > 0 with 6(> 0) unknown and the censoring times
Y, having common (unknown) survival function G . We

i

consider the sequence of estimators {6n} of 6 given by

: ORIV Pl DI U I Wl AL |

. [1.1]
0 if }.o; 6, =0.

én is easily seen to converge a.s. to 0 as n— e _for each o .
The loss incurred in estimation of 6 by 6n is
Ln(a,c) = a(en - 9)2 + cn _ . [1.2]
vhere a(> 0) 1is a known constant and c(> 0) is the cost per unit
observation. With the definition [1.1] we can show that
B - 0% = (a0?/E6)n™t + ota™h) {1.3)
whence the risk associated with the estimation scheme becomes

Rn(a,c) - ELn(a,c) = (362/E6)n_1 + cn + o(n-l)'.

Therefore, in order to minimize this risk (with respect to n) we must
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take a sample of size ng with subsequent minimum risk Rg where (for

small c) . .
o_.,. 0 0_ ,..2 K '
Rb 2cnc and n_ . (a8“/cES8) ¢ . [1.4)

Since 06 is the unknown parameter which we wish to estimate, this minimum

risk Rg. and optimal sample size ng are also unknown and thus we are

led naturally to explore a sequential scheme for estimating 6 . Invthis

P L &l

article we propose one such procedure in which the sample size is given

*
by a random stopping number N(c) and the associated risk R, = ELN(c)

. *
satisfies Rc/Rg-—+ 1 as ¢ — 0, that is if our scheme is asymptotically

risk-efficient.

Sequential procedures analogous to the éne outlined here have been
considered, in the absénce of censoring, by Severai researchers beginning
with thé pioneering work of Robbins (1959) for the estimation of the mean .
of anormal population. This was later exténded by Starr (1966) and Starx
=i A and Woodroofe (1969). The study of sequential point estimation of the
exponential mean is taken up in Starr and Woodroofe (1972). Gardiner and’
Susarla (1982) make the first examination of the problem of sequential
estimation of the mean survival time in the presencé of ceﬁsoring when both

the undetlying survival time and censoring distributions are unspecified.

T

When censoring is absent, similar procedures for estimation of functionals

of an unspecified distribution are discussed inlSen and Ghosh (1981), Ghosh

WIS W et s

and Mukhopadhayay (1978) with some extensions and refinements by Chow et.

~ ey

al. (1981, 1982). Throughout the rest of the paper, the terms involving )
the random variable [{1:1 61 = 0] are left out without any further
indfcation since P[Iifl 61 = 0] goes to zero at an exponential rate and

} -
: all our scale factors will be 1lik= n 8 with a>0.

L
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2, The Sequential Procedure

Let m(2 1) be the initial sample size. Then motivated by [1.4)
define the stopping number N, (= N(c)) by
N_ = min{n 2 m:n 2 (293(6 +a ") - (2.1)
c c n
where y > 0 1is a constant and Si is an appropriate estimator of

02(6) = OzlEB = 03(&; FG)_l . Notice that by the ordinary Central Limit

Theorem we have from [1.1)
ni(8_ - 8) —p N(0,0%(0)). | . [2.2]

An appropriate estimator of 02(6) based on {(21,61):1 <4i<n} is

-~

oﬁ where

62 = 83/Z = {Z/EME_ 4 0] [2.3]
with the overscore Jenoting the usual corresponding sample mean and ([A]
denoting the indicator of the set A . Observe that for each fixed 6 ,
aﬁ converges a.s. to 02(6) as n—> o,

Our proposed sequential scheme will take N(c) observations and

estimate 6 by én(c) with resulting risk
R' = a E(§ 8)% + ¢ E(N( [2.4)

The main result of this paper is

Theorem 1, (Risk Efficiency), For each y > 0,

*, 0
R.cllt.c —+1 as ¢+ 0.,
Furthermore, we can easily demonstrate

Theorem 2, (Asymptotic Normality of aN(c))' As ¢ + 0, for each 6

{/N(c) (eN(c) - e)/&N(c)} converges in distribution tq a standard normal

random variable.




The proofs of these theorems are outlined in the next section. We
begin with a demonstration of the expansion [1,3]) and a lemma concerning

the rate of growth of N(¢) as c + 0.

3. Proofs.

R Y o O

We begin with a Lemma on left truncated inverse binomial moments.

Lemma l, Let V be a binomial random variable with parameters n,p .
Then for any positive integers k, &
E(VELY 2 £)) < Keop) 7K

| where the constant K does not depend on n and p .

‘ ‘ Proof. Write nl¥) = n(n - 1.....(n -k +1) and o[kl . (n[k])ql « Then

, ' ‘ tf(){(x + k)'-[k] a [¥] PE - p)¥®/x1}
%20 -

. |
‘I = (@ + 1)K zo{(n + )[R X R G2 1)
! ) x=

R L s meE gk
Therefore since (x + k)!¥1/x* 1s decreasing with respect to x ,
| B(v"k'[v 28] s (L+Kk) (k) p-k E{(V + k)"m v 221}
s @+ g% (q 4l K
< K@p)7* .

We now turn to the crucial expansion given in [1.3].. To this end note that

i ot Rre S

from [1.1] we can write

N TP T T A bk S

% 0, -8 =UV . [3.1)
where
- — —-1 .~
U, =2 -03);V = § I8, ) [3.2)

We then have

Lemma 2, For any p 21, EIUnIZP - O(n-p) and Elvnlp = 0(1) .

L ' :
t% - R A P T o - r‘ S h"" . ‘}\l




E Proof. Since § is either 0 or 1 and 0<Z < X a.s., all moments
of 8 and Z are finite. From [3.2), we see that Un is the average
of n iidrv's with zero mean and variance 0226(- ® EZ) . Then by the

Marcinkiewicz-Zygmund-H8lder inequality we obtain

nlunlzl’ < klﬁ’ E|z - 05]%P = 0(aP) .
(Here, and throughout this sequel kj is a generic constant not depeﬁding
on n).
For the second part of this lemma we apply Lemma 1 to the binomfal
random variable 53; » from which the required statement follows immediately.

This concludes the proof of Lemma 2.

Before we proceed further, we point out that [1.3] follows from the

equality 'an -9 = (Et‘S)m1 Uﬁ{l - anEg -~ BS)} where v, and vn are

defined by [3.2].

The next Lemma gives a coavergence rate (as c¢ + 0) for the stopping
number N, of [2.1). PFirst note that Nc 2 (%)1/2(1+7) a.s. so that N, t=
a.s. as c + 0 . In the sequel int [x] denotes the greatest integer
€ x and kl,kz,--° denote constants independent of ¢ , but could depend

on G and 6 .

! Lemma 3. Let 0 < e <1 be arbitrary. Thenas c + 0

‘. PN, < i‘nt[ng(l - €)]] = 0(c)

and {3.3]
PIN_ > tnt[n(1 + 1] = 0(c) .

Proof. Write b = (%)k and n- 1nt[b1ICI+7)] » Ny = int[ng(lj- €)].

On the set [Nc < nzc] we have that n 2 ban for some n c'(nlc,'-°--',n2c} .

Therefore

;
P
i g;g& - - ol PP
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Since a — 20(!515)—2 = a

P2 R -1
P[Nc < “2c] < P[ngn ["n S bt ])

lc

n . .
2c L, . :

sPLU 52 - 0% s b2l - o?)] , vhere oF = a?(0) = 0%/ES ,
n.-n1c ' ¢ _

n
2c

spl U []s2 - o?| 20 c2 - 0N
n‘nlc

= P[ max |3§ - azl 2n], for some n >0 . {3.4]

nlcSnSnzc

2 2 — - .
Now o, -0 = an(zn - EZ) - bn(an - E§) - {3.5])

where

a = (Z +E2)§3(3 #0] and

n n n 'n

2 32, < ) 2,—=-3 —
bn = (EZ) (ES) (Gn + & ES + (ES) )6n [Gn # 0] .
] __2 .

o 2-s-and b — 36(ES) ©~ = b, a.s. as a— =,
we obtain from [3.5] that the righthand side of [3.4] may be bounded by

P[ max li; - EZI >n] + P[[ wmax |E; - E6| > nl t3,6]

®1e5™ " 2¢ 0 S0y

for an n > 0 . Each of the two terms in [3.6] are handled in the same
fashion. Observe that {IE; - Ezl:n1c Sn< nzc] is a reverse submartingale
to which the Kolmogorov maximal inequality applies. Thus

P[ max |Z -Ez] 2n] sk, E|‘:Znl - Ezl‘”"”r = 0(c) ,
A .

nICSnSnzc

where kl is a constant depending only on y . Thus combining [3;4]
through [3.6] yields the first statement of Lemma 3. The second is proven
in much the same way and so the proof of the lemma is terminated;
We may utilize the expansion in [3.5] to obtain the uniformuintegrability

of {Nc/ngzo <c s co] for some c, sufficiently small; from this

E{Nc/ng} ~*1 as c + 0 will follow.
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To this end note from [2.1] that
a 0 a - -y -1
°N(c),° <N/ s °N(c)—1/° + (N(c) - 1) /o + (bo) ~ .

Then since Nc +o asg, (as c ¥ 0) , we obtain Né/ng —+ 1 a.s.,

Furthermore : ’ |
0,2 " 2 ~2 . —27 -2 )

(N./n )" s 8{(0y(.y_3/0)" + @ “(N(c) - 1) ™7 + (bo) 7} .
Thus in order to show E( sup (Nc/ng)z) < o for some o sufficiently

T esc
(0}

small, we need only examine E(suplailu2 - 1) for sufficiently large m . ]
nzm

However, from [3.5]) and the convergences a —*a;, bn-—+ bo a.s. it

i suffices to establish the finiteness of E(suplz; - EZI) and
) n2m

E(suplzg.— E6|) . The second is trivial, while the first is bounded by four times
n2m '

‘ : - E[i; - Ezl2 since {IE; - Ez}:n 2 m} is a reverse submartingale.

» g Probf of Theorem 2. Recall [3.1] and [3.2]. From the central limit theorem 1
n&Un'—*v N(0,02E6) , for each 0 > Q . Also Vn-—+ (EG)-lla.s. Hence ‘
n&(sn - 0) —p N(O,oz) . We have noted that ai-—+ 02 a.s. (as n — =)

y | . and Nc te~ as c + 0. Hence, by [3.8], [3.13], and [3.15] below, we get

Vﬁ(c) (SN(C) - B)IGN(C) ""‘v N(Osl) as ¢ + 0 ..

Proof of Theorem 1. In view of the fact that E{Nc/ng} — 1, [1.4] and
{2.4) we must verify that

o : 0,-1 _ a2 2

: _ 1lim(en)) E(8 -8)"=1. {3.7]

) cto ¢ N(e)
Recall the expansion [3.3]. We first show
0,-1 A 2

- 1im (cgc) E{(GN(C) - 0) [Nc < nzc]} =0 . (3.8]
- N c40 . .o . . . ‘
Now - ‘ﬂ

(N e)2mc S nyel) € &y {Eug(c)[Nc S my ) + Ewﬁ(c)[uc sn, 1}, [3.9)

where

, | Wh = Unvn(én - ES)




Now applying the maximal inequality to the reverse submartingale

{IE; - 6E;|:nlq Sn< an} in the third step and Lemma 3 we.have_

2 2
E{UN(c)[Nc < nzc]} < E( max Un[Nc < n2c])
: nlcsnanc

B L g l2+27)(PlNc'S nzc])yl(lw)'

n
CSnSn

n 2c

1

lc

= oG ho My |

“Since n.” c~1/2(1+7) and (cn2)~1 ~ c:_!5 we have that

'tig(cng)-l E{U:(c)[Nc $n, 1) =0. [3.10)
2 "2,
Similarly E{wN(c) [N, <0, 1} = nzn E{(W [N, = n]}
lc ‘
2 g 1/p 1-1/p
< (nzn EW )P, <0, 1) ,p>1. {3.11]

1c

P _ 2p  2p;5 2p
Now Ewi E{un v, (cn ES)F)

1/3,,.6p,.1/3,.6p,,1/3 6p
<E {un }JE {vn 1E (Gn-—EG)

= {(0(a~>Pyo(1)om 3Py3/3 < o(n2P)

Thus the rhs in [3.11)] is 0(n12+1/p cl_l/p) = O(Ch) , where

Yoo
A e = p

h= {20+ )} 22 =-1/p) + (0 -~ 1/p) > % whenever p > 2y + /G +7v) . So

-
: 0,-1 o0 2 ]
; lim(cnc) E{WN(c) [Nc < n2c]} 0 [3.12)
¢ ct0
é Collecting our results [3.10] and [3.12) we obtain [3.8]. An entirely
1 . .
¢ analogous argument using the second part of Lemma 3 will show
0,~1 _, 2 2
iig(cnc) E{ON(C) - 8) [Nc > nBc]} o, [3.13]

wvhere n,. = [ng(l + €)) . Therefore, 1in order to verify [3.7] we are




10
left with proving
ltm(end) ™t B{(8y, y - O%In,_ < N sng )} =0, [3.14)
N(ec) 2¢
c+0
However, from [1.3] lim(cnc)" E(s 0" 6) = 1 , and further from the
ci0 n )
c

inequality

' E{(au(c) - éno)(ano - 9)[n2c < Nc < n3c]}
C [
< BN, . - §n0)2[n2c <Ny <y 1) z*(éno - 0)?
[ [

N(e)

we see that it suffices to establish

11m(cn® 9" E{(SN(C) -8 0)2[n2c <N sn, ]} =0. [3.

ci0 n
c

Once again we utilize the expression [3.3] from which we get

-1
N(C) = (Es) {UN(C) - uno) - (“N(c) - “no)} . [3-16]

c- [ [
Observe that

a’ P 2
E{(BN(c) -9 0) [n2c < Nc < n3c]}

c
‘% ks[E{( ( 5 - U o) [n < Nc < n3c]} [3.17]
c
+ El¥gey ~ " o [“2c < N, < ng.1}]

Now ° ¢
E{<UN(c) - UnO)zanc <‘§c < n3c]}
¢ [3.18]

< max [E{ max MURER 0)2} » E{ o max (Un'- U 0) }]

n, <n< n <ng
2¢ =0 e L T c

. 0 2 0
Since {Un.n2c <ns nc] is a reverse martingale, {(Un -U 0) iy, <ng nc}

Be

is a reverse submartingale to which the maximal inequality will be applied.




11
This yields
E{ max o(U - U 0)2} < 4 E{Un -v 0}2
n_ <asn on 2c n
2c c c [
= 4 {EU 2 _ 2} [3.19]
n, 0
c n,

2

R ] 2 -1
Now EUn = (6"Eé8)n y g = int[ng(l -~ €)) and cng = 0(1) . Therefore the

rhs of [3.19] is of order (cng)e(l - s)-10(1) . Hence, by choosing ¢

arbitrarily small we have that ‘
Lim(en) E{ max o, - 2 =0. (3.20]

ct0 n, <nsn n .
2c c c

The second term in [3.18] is handled in an entirely analogous fashion

and will yield the result paralleling [3.20}. So

0,.-1 2 -
iig(cnc) E{(UN(C) - Ung) [n2c < Nc < n3c]} =0, [3.21)

Finally we must dispose of the second term in [3.17). This is easily

handled using the bound Ewi = 0(n~2) and the simple inequalities

2
E{(wl‘l(c) - wnO) [n2c < Nc = n3c]}

c
. n
» 3c -2 -1
2 " 2 0 () -2
<4 {ew + "} EW )} =0(m ) +0m Je(d-¢)”.
n n=n .
c 2c
-l Then on selecting € arbitrarily small we obtain

0,-1 2 ~
L iig(cnc) E{(WN(c) - wng) [n2c < Nc < n3c]} =0. [3.22)

Therefore in conjunction with {3.17}, [3.21], and [3.22] yield [3.15].

This concludes the proof of Theorem 1.




4. Concluding Remarks.

To start with, it is worth pointing out that the results are true
even 1f G 1is degenerate at any point T . That is, the reSulté hold |

even in the fixed point truncation of xi « Although the results are

stated here only when Yl,---,Yn,-'- are 1.1i.d., similar results hold
even if Yl,oo-,Yn,--- are assumed to be independent only. 1In the

latter case however, some sort of condition like lim L; fE; > 0, with
— n N0
2aG =) G

n » Deeds to be imposed.
i=1

i

The final comment concerns the damping factor n ¥ introduced in the
definition (2.1) of the stoppihg random variable Nc . Without this factor,

the sequential estimator 5N ‘may not be asymptotically risk efficient
c ,
as the following argument suggests. Define

Nc,l = min{n 2 m:n 2 (%)k an} [4.1]

where Sn is defined by [2.3]. With these definitions, it can be seen
that if the censoring distribution G has positive mass pat zeré, then

of the sequential procedure 6N. is at least 62pm

*
the risk R
c
c,l

»1

* ' . ,
and R, 1/R2-—+ w as ¢ + 0 and hence 6 is asymptotically totally
’

Nc,l

risk inefficient. Thus the factor n ! in the definition of Nc appears

to be important.
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